UNIVERSAL MATHEMATICAL MODEL OF CALENDAR YEAR DURATION FOR ALL TYPES OF THE EXCHANGE CALENDARS. CALENDAR CONSTANT
Table of contents
Share
QR
Metrics
UNIVERSAL MATHEMATICAL MODEL OF CALENDAR YEAR DURATION FOR ALL TYPES OF THE EXCHANGE CALENDARS. CALENDAR CONSTANT
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
109-129
Abstract

Now there are three separate independent “passive analogue” mathematical models: for lunar, solar and luni-solar calendars which does not take into account a system error. The uniform universal mathematical model for all the three types of calendars does not exist. In the article author offers the uniform universal “active digital” mathematical model for all the existing types of calendars which takes into account a system error.

Keywords
passive analogue mathematical model of a solar calendar, passive analogue mathematical model of a lunar calendar, passive analogue mathematical model of a luni-solar calendar, uniform universal active digital mathematical model, duration of year of all the types of exchange calendars, system error, a calendar constant, main calendar condition of an ideal calendar, theoretically ideal calendar, tenth form of a market system
Date of publication
01.01.2015
Number of purchasers
1
Views
918
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References



Additional sources and materials

Akhslis Eh. (1963). Mirovoj kalendar' // Priroda. № 3. S. 46–48.

Bokareva N. (2012). Uchenye pridumali vechnyj kalendar'. [Ehlektronnyj resurs] 1 yanvarya 2012 g. Rezhim dostupa: http://www.bfm.ru/news/166335?doctype=article, svobodnyj. Zagl. s ehkrana. Yaz. rus. (data obrascheniya: sentyabr' 2014 g.).

Idel'son N.I. (1925). Istoriya kalendarya. M.: Nauchnoe izdatel'stvo.

Katasonov V.Yu. (2013) Kapitalizm. Istoriya i ideologiya “denezhnoj tsivilizatsii”. M.: Institut russkoj tsivilizatsii. S. 373.

Klimishin I.A. (1990). Kalendar' i khronologiya. M.: Nauka. S. 196–197, 97–98.

Klimishin I.A. (1981). Kalendar' i khronologiya. M.: Nauka.

Kulikov S. (1991). Nit' vremen. Malaya ehntsiklopediya kalendarya s zametkami na polyakh gazet. M.: Nauka. S. 162–163.

Medler I.G. (1862). Kratkaya astronomiya. SPb.

Morozov S.L. (2013a). Novyj kalendar' chelovechestva. Monografiya. M.: TsEhMI RAN.

Morozov S.L. (2013b). Ob odnoj novoj kalendarnoj sisteme // Ehkonomika i mat. metody. T. 49. № 4.

Morozov S.L. (2014a). Edinyj birzhevoj kalendar' chelovechestva. Kalendarnaya ehntsiklopediya. Monografiya. M.: TsEhMI RAN.

Morozov S.L. (2014b). Novyj kalendar' chelovechestva. Ehpokha kalendarnoj globalizatsii. Monografiya. M.: TsEhMI RAN.

Seleshnikov S.I. (1970). Istoriya kalendarya i khronologiya. M.: Nauka. C. 73.

Khrenov L.S., Golub I.Y. (1989). Time and Calendar. Main Editorial Board for Literature on Physics and Mathematics. Moscow: Nauka, R. 625.

McCarthy D., Seidelmann P.K. (2009). Time from Earth Rotation to Atomic Physics. Weinhein: Wiley-VCH Verlag GmbH & Co. KGaA.

Meeus J.S. (1998). Astronomical Algorithms. Richmond: Willmann-Bell. P. 41.

Secular Terms of the Classical Planetary Theories Using the Results of General Theory (2009) // Astronomy and Astrophysics.. No. 157. R. 59–70.

Seidelmann K.P. (1992). Explanatory Supplement to the Astronomical Almanac. Sausal University Science Books.

Comments

No posts found

Write a review
Translate